3.2.33 \(\int \frac {\sqrt {e \tan (c+d x)}}{(a+a \sec (c+d x))^2} \, dx\) [133]

3.2.33.1 Optimal result
3.2.33.2 Mathematica [C] (warning: unable to verify)
3.2.33.3 Rubi [A] (verified)
3.2.33.4 Maple [C] (warning: unable to verify)
3.2.33.5 Fricas [F(-1)]
3.2.33.6 Sympy [F]
3.2.33.7 Maxima [F]
3.2.33.8 Giac [F]
3.2.33.9 Mupad [F(-1)]

3.2.33.1 Optimal result

Integrand size = 25, antiderivative size = 363 \[ \int \frac {\sqrt {e \tan (c+d x)}}{(a+a \sec (c+d x))^2} \, dx=-\frac {\sqrt {e} \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a^2 d}+\frac {\sqrt {e} \arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a^2 d}+\frac {\sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a^2 d}-\frac {\sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a^2 d}-\frac {4 e^3}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac {4 e^3 \sec (c+d x)}{5 a^2 d (e \tan (c+d x))^{5/2}}+\frac {2 e}{a^2 d \sqrt {e \tan (c+d x)}}-\frac {12 e \cos (c+d x)}{5 a^2 d \sqrt {e \tan (c+d x)}}-\frac {12 \cos (c+d x) E\left (\left .c-\frac {\pi }{4}+d x\right |2\right ) \sqrt {e \tan (c+d x)}}{5 a^2 d \sqrt {\sin (2 c+2 d x)}} \]

output
-1/2*arctan(1-2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))*e^(1/2)/a^2/d*2^(1/2)+ 
1/2*arctan(1+2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))*e^(1/2)/a^2/d*2^(1/2)+1 
/4*ln(e^(1/2)-2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c))*e^(1/2)/a^2 
/d*2^(1/2)-1/4*ln(e^(1/2)+2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c)) 
*e^(1/2)/a^2/d*2^(1/2)+2*e/a^2/d/(e*tan(d*x+c))^(1/2)-12/5*e*cos(d*x+c)/a^ 
2/d/(e*tan(d*x+c))^(1/2)+12/5*cos(d*x+c)*(sin(c+1/4*Pi+d*x)^2)^(1/2)/sin(c 
+1/4*Pi+d*x)*EllipticE(cos(c+1/4*Pi+d*x),2^(1/2))*(e*tan(d*x+c))^(1/2)/a^2 
/d/sin(2*d*x+2*c)^(1/2)-4/5*e^3/a^2/d/(e*tan(d*x+c))^(5/2)+4/5*e^3*sec(d*x 
+c)/a^2/d/(e*tan(d*x+c))^(5/2)
 
3.2.33.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.04 (sec) , antiderivative size = 2792, normalized size of antiderivative = 7.69 \[ \int \frac {\sqrt {e \tan (c+d x)}}{(a+a \sec (c+d x))^2} \, dx=\text {Result too large to show} \]

input
Integrate[Sqrt[e*Tan[c + d*x]]/(a + a*Sec[c + d*x])^2,x]
 
output
(Cos[c/2 + (d*x)/2]^4*Sec[c + d*x]^2*((-24*Cos[c/2]*Cos[d*x]*Sec[2*c]*(4*S 
in[c/2] + Sin[(3*c)/2] + Sin[(5*c)/2]))/(5*d*(1 + 2*Cos[c])) - (56*Sec[c/2 
]*Sec[c/2 + (d*x)/2]*Sin[(d*x)/2])/(5*d) + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^ 
3*Sin[(d*x)/2])/(5*d) - (12*(-2 - 5*Cos[c] - 6*Cos[2*c] + Cos[3*c])*Sec[2* 
c]*Sin[d*x])/(5*d*(1 + 2*Cos[c])) - (56*Tan[c/2])/(5*d) + (4*Sec[c/2 + (d* 
x)/2]^2*Tan[c/2])/(5*d))*Sqrt[e*Tan[c + d*x]])/(a + a*Sec[c + d*x])^2 + (( 
E^((2*I)*c)*Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt[-1 + E^((4*I)*(c + 
d*x))]] - 2*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x))]*A 
rcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])*Cos[c/ 
2 + (d*x)/2]^4*Sec[2*c]*Sec[c + d*x]^2*Sqrt[e*Tan[c + d*x]])/(d*E^(I*c)*Sq 
rt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*(1 + E^((2 
*I)*(c + d*x)))*(1 + 2*Cos[c])*(a + a*Sec[c + d*x])^2*Sqrt[Tan[c + d*x]]) 
- ((-(E^((4*I)*c)*Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt[-1 + E^((4*I) 
*(c + d*x))]]) + 2*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d 
*x))]*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]]) 
*Cos[c/2 + (d*x)/2]^4*Sec[2*c]*Sec[c + d*x]^2*Sqrt[e*Tan[c + d*x]])/(d*E^( 
(2*I)*c)*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))] 
*(1 + E^((2*I)*(c + d*x)))*(1 + 2*Cos[c])*(a + a*Sec[c + d*x])^2*Sqrt[Tan[ 
c + d*x]]) - ((-(E^((6*I)*c)*Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt[-1 
 + E^((4*I)*(c + d*x))]]) + 2*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E...
 
3.2.33.3 Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 377, normalized size of antiderivative = 1.04, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 4376, 3042, 4374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {e \tan (c+d x)}}{(a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {-e \cot \left (c+d x+\frac {\pi }{2}\right )}}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 4376

\(\displaystyle \frac {e^4 \int \frac {(a-a \sec (c+d x))^2}{(e \tan (c+d x))^{7/2}}dx}{a^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e^4 \int \frac {\left (a-a \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2}{\left (-e \cot \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}dx}{a^4}\)

\(\Big \downarrow \) 4374

\(\displaystyle \frac {e^4 \int \left (\frac {\sec ^2(c+d x) a^2}{(e \tan (c+d x))^{7/2}}-\frac {2 \sec (c+d x) a^2}{(e \tan (c+d x))^{7/2}}+\frac {a^2}{(e \tan (c+d x))^{7/2}}\right )dx}{a^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^4 \left (-\frac {a^2 \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{7/2}}+\frac {a^2 \arctan \left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d e^{7/2}}+\frac {a^2 \log \left (\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{7/2}}-\frac {a^2 \log \left (\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{7/2}}-\frac {12 a^2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{5 d e^4 \sqrt {\sin (2 c+2 d x)}}+\frac {2 a^2}{d e^3 \sqrt {e \tan (c+d x)}}-\frac {12 a^2 \cos (c+d x)}{5 d e^3 \sqrt {e \tan (c+d x)}}-\frac {4 a^2}{5 d e (e \tan (c+d x))^{5/2}}+\frac {4 a^2 \sec (c+d x)}{5 d e (e \tan (c+d x))^{5/2}}\right )}{a^4}\)

input
Int[Sqrt[e*Tan[c + d*x]]/(a + a*Sec[c + d*x])^2,x]
 
output
(e^4*(-((a^2*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]* 
d*e^(7/2))) + (a^2*ArcTan[1 + (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sq 
rt[2]*d*e^(7/2)) + (a^2*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[ 
e*Tan[c + d*x]]])/(2*Sqrt[2]*d*e^(7/2)) - (a^2*Log[Sqrt[e] + Sqrt[e]*Tan[c 
 + d*x] + Sqrt[2]*Sqrt[e*Tan[c + d*x]]])/(2*Sqrt[2]*d*e^(7/2)) - (4*a^2)/( 
5*d*e*(e*Tan[c + d*x])^(5/2)) + (4*a^2*Sec[c + d*x])/(5*d*e*(e*Tan[c + d*x 
])^(5/2)) + (2*a^2)/(d*e^3*Sqrt[e*Tan[c + d*x]]) - (12*a^2*Cos[c + d*x])/( 
5*d*e^3*Sqrt[e*Tan[c + d*x]]) - (12*a^2*Cos[c + d*x]*EllipticE[c - Pi/4 + 
d*x, 2]*Sqrt[e*Tan[c + d*x]])/(5*d*e^4*Sqrt[Sin[2*c + 2*d*x]])))/a^4
 

3.2.33.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4374
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_))^(n_), x_Symbol] :> Int[ExpandIntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[ 
c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]
 

rule 4376
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_))^(n_), x_Symbol] :> Simp[a^(2*n)/e^(2*n)   Int[(e*Cot[c + d*x])^(m + 2* 
n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[a 
^2 - b^2, 0] && ILtQ[n, 0]
 
3.2.33.4 Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 4.23 (sec) , antiderivative size = 705, normalized size of antiderivative = 1.94

method result size
default \(\frac {\sqrt {2}\, \sqrt {-\frac {e \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \left (5 i \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-5 i \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+24 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticE}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-12 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-5 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-5 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+2 \left (1-\cos \left (d x +c \right )\right )^{4} \csc \left (d x +c \right )^{4}-2 \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}\right )}{10 a^{2} d \sqrt {\left (1-\cos \left (d x +c \right )\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \csc \left (d x +c \right )}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+\cot \left (d x +c \right )-\csc \left (d x +c \right )}}\) \(705\)

input
int((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
1/10/a^2/d*2^(1/2)*(-e/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*(-cot(d*x+c)+csc( 
d*x+c)))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*(5*I*(csc(d*x+c)-cot(d*x+ 
c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1 
/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))-5*I* 
(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d 
*x+c)-csc(d*x+c))^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2+1/2 
*I,1/2*2^(1/2))+24*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d 
*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticE((csc(d*x+c)-cot(d*x+c 
)+1)^(1/2),1/2*2^(1/2))-12*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c) 
+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticF((csc(d*x+c)-c 
ot(d*x+c)+1)^(1/2),1/2*2^(1/2))-5*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc 
(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticPi((csc( 
d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))-5*(csc(d*x+c)-cot(d*x+c) 
+1)^(1/2)*(2-2*csc(d*x+c)+2*cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2 
)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))+2*(1-c 
os(d*x+c))^4*csc(d*x+c)^4-2*(1-cos(d*x+c))^2*csc(d*x+c)^2)/((1-cos(d*x+c)) 
*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*csc(d*x+c))^(1/2)/((1-cos(d*x+c))^3*csc 
(d*x+c)^3+cot(d*x+c)-csc(d*x+c))^(1/2)
 
3.2.33.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {e \tan (c+d x)}}{(a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")
 
output
Timed out
 
3.2.33.6 Sympy [F]

\[ \int \frac {\sqrt {e \tan (c+d x)}}{(a+a \sec (c+d x))^2} \, dx=\frac {\int \frac {\sqrt {e \tan {\left (c + d x \right )}}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx}{a^{2}} \]

input
integrate((e*tan(d*x+c))**(1/2)/(a+a*sec(d*x+c))**2,x)
 
output
Integral(sqrt(e*tan(c + d*x))/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x)/a 
**2
 
3.2.33.7 Maxima [F]

\[ \int \frac {\sqrt {e \tan (c+d x)}}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {\sqrt {e \tan \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")
 
output
integrate(sqrt(e*tan(d*x + c))/(a*sec(d*x + c) + a)^2, x)
 
3.2.33.8 Giac [F]

\[ \int \frac {\sqrt {e \tan (c+d x)}}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {\sqrt {e \tan \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

input
integrate((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")
 
output
integrate(sqrt(e*tan(d*x + c))/(a*sec(d*x + c) + a)^2, x)
 
3.2.33.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {e \tan (c+d x)}}{(a+a \sec (c+d x))^2} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2\,\sqrt {e\,\mathrm {tan}\left (c+d\,x\right )}}{a^2\,{\left (\cos \left (c+d\,x\right )+1\right )}^2} \,d x \]

input
int((e*tan(c + d*x))^(1/2)/(a + a/cos(c + d*x))^2,x)
 
output
int((cos(c + d*x)^2*(e*tan(c + d*x))^(1/2))/(a^2*(cos(c + d*x) + 1)^2), x)